Mutational and functional analysis of Large in a novel CHO glycosylation mutant.
نویسندگان
چکیده
Inactivating mutations of Large reduce the functional glycosylation of alpha-dystroglycan (alpha-DG) and lead to muscular dystrophy in mouse and humans. The N-terminal domain of Large is most similar to UDP-glucose glucosyltransferases (UGGT), and the C-terminal domain is related to the human i blood group transferase beta1,3GlcNAcT-1. The amino acids at conserved motifs DQD+1 and DQD+3 in the UGGT domain are necessary for mammalian UGGT activity. When the corresponding residues were mutated to Ala in mouse Large, alpha-DG was not functionally glycosylated. A similar result was obtained when a DXD motif in the beta1,3GlcNAcT-1 domain was mutated to AIA. Therefore, the first putative glycosyltransferase domain of Large has properties of a UGGT and the second of a typical glycosyltransferase. Co-transfection of Large mutants affected in the different glycosyltransferase domains did not lead to complementation. While Large mutants were more localized to the endoplasmic reticulum than wild-type Large or revertants, all mutants were in the Golgi, and only very low levels of Golgi-localized Large were necessary to generate functional alpha-DG. When Large was overexpressed in ldlD.Lec1 mutant Chinese hamster ovary (CHO) cells which synthesize few, if any, mucin O-GalNAc glycans and no complex N-glycans, functional alpha-DG was produced, presumably by modifying O-mannose glycans. To investigate mucin O-GalNAc glycans as substrates of Large, a new CHO mutant Lec15.Lec1 that lacked O-mannose and complex N-glycans was isolated and characterized. Following transfection with Large, Lec15.Lec1 cells also generated functionally glycosylated alpha-DG. Thus, Large may act on the O-mannose, complex N-glycans and mucin O-GalNAc glycans of alpha-DG.
منابع مشابه
Isolation and Characterization of a New Peroxisome Deficient CHO Mutant Cell Belonging to Complementation Group 12
We searched for novel Chinese hamster ovary (CHO) cell mutants defective in peroxisome biogenesis by an improved method using peroxisome targeting sequence (PTS) of Pex3p (amino acid residues 1–40)-fused enhanced green fluorescent protein (EGFP). From mutagenized TKaEG3(1–40) cells, the wild-type CHO-K1 stably expressing rat Pex2p and of rat Pex3p(1–40)-EGFP, numerous cell colonies resistant to...
متن کاملThe Effects of Novel Mutations in A1 Domain of Human Coagulation Factor VIII on Its Secretion Level in Cultured Mammalian Cells
Inefficient secretion of the human coagulation factor (hFVIII) in mammalian expression systems is one ofthe main causes of the hFVIII low expression level, attributed to its interaction with a chaperone known asBiP/GRP78. In order to improve secretion efficiency of the hFVIII, based on the higher secretion level of theporcine FVIII and analysis of the hFVIII A110 region, that ...
متن کاملThe role of N-linked glycosylation in protein folding, membrane targeting, and substrate binding of human organic anion transporter hOAT4.
We used a novel approach to evaluate how the addition/acquisition and processing/modification of N-linked oligosaccharides play a role in the functional maturation of human organic anion transporter hOAT4. Inhibition of acquisition of oligosaccharides in hOAT4 by mutating asparagine to glutamine and by tunicamycin treatment was combined with the expression of wild-type hOAT4 in a series of muta...
متن کاملMutational analysis of ARSB gene in mucopolysaccharidosis type VI: identification of three novel mutations in Iranian patients
Objective(s): Mucopolysaccharidosis VI (MPS VI) or Maroteaux-Lamy syndrome is a rare metabolic disorder, resulting from the deficient activity of the lysosomal enzyme arylsulfatase B (ARSB). The enzymatic defect of ARSB leads to progressive lysosomal storage disorder and accumulation of glycosaminoglycan (GAG) dermatan sulfate (DS), which causes harmful effects on various organs and tissues an...
متن کاملIn silico mutational analysis and identification of stability centers in human interleukin-4
Interleukin-4 (IL-4) is a multifunctional cytokine that plays a critical role in apoptosis, differentiation and proliferation. The intensity of IL4 response depends upon binding to its receptor, IL-4R. The therapeutic efficiency of interleukins can be increased by generating structural mutants having greater stability. In the present work, attempts were made to increase the stability of human I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Glycobiology
دوره 19 9 شماره
صفحات -
تاریخ انتشار 2009